

Section 22: Python Scripting with

Spatial Modeler

Section Objective
The ERDAS IMAGINE® Spatial Modeler (2013 release and later) contains capabilities for
creating and executing spatial models in the Python® scripting language, and for embedding a
Python script in a spatial model. The 2015 release supports 32-bit installations of Python 2.7 only.
Almost any spatial model that can be constructed in the Spatial Model Editor can also be created
from a Python script, or a previously created model can be loaded from a .gmdx file. Model inputs
can be set from Python, the model can be executed in the Python process, and output values can
be read.

The Spatial Model Editor also provides a Python operator that can execute any Python script
whose inputs and output are the simplest data types: text string, integer, or floating-point number.
This document assumes that the reader is familiar with the basic concepts and operation of the
Spatial Modeler Editor.

Tools Used

Python IDLE 3
rd

 Party Scripting Tool to incorporate into IMAGINE

Spatial Modeler

Python Operator Used to input and output a python script into and out of

Spatial Modeler

438 Python Scripting with Spatial Modeler

Class Notes

 439

Class Notes

440 Python Scripting with Spatial Modeler

Python Scripting with Spatial Modeler

Task 1: Configuring Python for Use with Spatial Modeler

For reference, the ERDAS IMAGINE Python libraries are installed in:

 $IMAGINE_HOME\usr\lib\Win32Release\python

1. To test if the ERDAS IMAGINE Python libraries have been configured correctly, open
Python 2.7 > IDLE (Python GUI) from the start menu.

2. Go to File > New Window.

3. Save the script as test.py.

4. To load the Spatial Modeler Libraries type the following:

 # Load the Spatial Modeler Libraries

 from imagine import modeler

 print “Done”

5. Save the script by going to File > Save (Ctrl + s)

6. Run the script by going to Run > Run Model (F5)

7. Your script will take several seconds to process while it loads the ERDAS IMAGINE
Python libraries.

8. If your Script says done then your libraries have been loaded and you can move on

to Task 2.

9. If you received an error message, please try the following steps.

10. Open ERDAS IMAGINE.

11. From the Help tab search for ‘python’.

12. Click the button Reconfigure PYTHON.

 441

13. Run test.py again.

14. If you are still having issues loading the libraries you will need to check your
environment variables to ensure PYTHONPATH is set to the location of your
python. Eg. $IMAGINE_HOME\usr\lib\Win32Release\python

Operator Limitations

The following Python syntax lists all the operators directly available to Python:

 from imagine import modeler

 modeler.list()

The syntax for a given operator is documented in the Spatial Model Editor online-help. Operator
spelling and syntax is also available via the default Python IDLE extensions: AutoComplete and
CallTips.

442 Python Scripting with Spatial Modeler

Task 2: Summing Image Layers

This exercise will focus on building a script to sum the bands of a Landsat dataset

The Spatial Modeler libraries are accessed in Python by loading the IMAGINE.Modeler library:

 from imagine import modeler

We need to set the input and output data path directories. Your directories may be different to
those below. You may need to create an ‘Outputs’ folder.

 dataPath = "C:\\python-examples\\data\\"

 outputPath = "C:\\python-examples\\data\\Outputs\\"

A spatial model object must be created to hold operators:

 m = modeler.Model()

Operators are created from the model itself. Each parameter of the constructor makes a
connection to an input port on the operator or provides a constant value to the port. The following
statement creates a Raster Input operator and sets its first input to the desired filename:

 ri = m.RasterInput(dataPath + "lanier.img")

Rather than constant values, as above, a previously-created operator can be passed as an input
to the next operator. If the operator passed in has more than one output, its first output is
connected.

 bandSelect = m.BandSelection(ri, "1:4")

We need to set a Raster Output location which writes
sumBands to the outputPath and

Ro = m.RasterOutput(sumBands, outputPath + “summing-image-
layers.img”)

 443

Your completed script should look similar to the one below;

Optional -
It is not necessary to keep a variable reference to the created operators; the Model object keeps
track of them.

If we wanted to we could also shorten the script by changing the operator creation:

444 Python Scripting with Spatial Modeler

Task 3: Preview an Output in ERDAS IMAGINE

One unique capability of the Spatial Modeler is the ability to display a dynamic preview In this
exercise we will modify the previous script to produce a dynamic preview in ERDAS IMAGINE.

1. In order to use the preview, ERDAS IMAGINE must be running. Open ERDAS
IMAGINE from the start menu.

2. Leave the remaining script as is but remove or comment out the m.Execute
statement.

3. Insert the following syntax

m.Preview(ro)

4. The “ro” in the parentheses is the output file we wish to preview. We could also
change this to “ri” (rasterInput) if we wanted to preview the input dataset.

5. Run the script and view the Preview in IMAGINE.

 445

Task 4: Saving a python script as a Spatial Model (*.gmdx)

Spatial models can be saved to disk, or loaded from a saved file. These include models ccreated
in the Spatial Model Editor. In some cases it may be more convenient to create a complex model
in the editor and execute it later from Python.

Load the Spatial Modeler libraries

from imagine import modeler

Get directories for input and output data -

dataPath = "C:\\python-examples\\data\\"

outputPath = "C:\\\python-examples\\data\\Outputs\\"

Create a spatial model

m = modeler.Model()

Add operators to the model

ri = m.RasterInput(dataPath + "lanier.img") # open image

bandSelect = m.BandSelection(ri, "1:4") # select bands
1-4

sumBands = m.StackTotal(bandSelect) # sum all the
selected bands

ro = m.RasterOutput(sumBands, outputPath + "summing-image-
layers.img")

Save the model

outputFile = outputPath + "sum-layers.gmdx"

modeler.Solution.Save(m, outputFile)

print "Saved spatial model to: " + outputFile

Create a variable called outputFile assign the name of the sum-layers Spatial Model (*.gmdx)

outputFile = outputPath + "sum-layers.gmdx"

446 Python Scripting with Spatial Modeler

Add the following to save the model ‘m’ to the OutputFile

 modeler.Solution.Save(m, outputFile)

Add a print command to verify the script has completed.

 print "Saved spatial model to: " + outputFile

Run the script.

We will now verify if the model has been generated correctly.

1. Open ERDAS IMAGINE from Start > All Programs > ERDAS IMAGINE 20XX >
ERDAS IMAGINE 20XX.

2. Create a new spatial model by going to File > New > Spatial Model Editor.

3. Open the Spatial Model by going to File > Open Spatial Model.

4. Navigate to your Outputs directory and select sum-layers.gmdx.

Your model should look similar the one below.

 447

448 Python Scripting with Spatial Modeler

Task 5: Loading and Executing a Saved Model

Spatial models can be saved to disk, or loaded from a saved file. These include models created
in the Spatial Model Editor; in some cases it may be more convenient to create a complex model
in the editor and execute it later from Python We can also directly load a Spatial Model (*.gmdx)
into a Python script.

This script will load the sum-layers.gmdx and write the summing-image-layers.img dataset to the
output directory again.

from imagine import modeler

Get directories for output data -
outputPath = "C:\\\python-examples\\data\\Outputs\\"

Load a saved model
modelFile = outputPath + "sum-layers.gmdx"
m = modeler.Solution.Load(modelFile)

Run the model
m.Execute()
print "Finished running " + modelFile

Set the output directory. In this case we will use the Output location as the Input location, as this
is where our sum-layers.gmdx model resides.

outputPath = "C:\\\python-examples\\data\\Outputs\\"

We will Create a variable called modelFile and set the outputPath and the sum-layers spatial
model.

modelFile = outputPath + "sum-layers.gmdx"

This time we will use the Solution.Load command to load the spatial model.

m = modeler.Solution.Load(modelFile)

Add a print statement to confirm he model has completed.

m.Execute()
print "Finished running " + modelFile

Run the script

Check your Outputs director to see if summing-image-layers.img has been re-written.

 449

If you receive an error, you may need to delete the pre-existing image-layers.img file.

450 Python Scripting with Spatial Modeler

Task 6: Setting a No Data region on an image

We will now look at an example which combines both raster and vector data. This example will
use a vector file to apply a NoData region to a raster. This exercise uses the lanier.img raster and
the lanier_no_data.shp vector.

1. Import the modeler, create the model and set the dataPath as we did in previous
exercises.

Import ERDAS IMAGINE's spatial modeling suite

from imagine import modeler

Create the owner model

m = modeler.Model()

Set the location of the input files

dataPath = "C:\\python-examples\\data\\"

2. Create a variable for an the lanier.img image and the lanier_no_data.shp vector.

Set the input datasets

ri = m.RasterInput(dataPath + "lanier.img")

vi = m.VectorInput(dataPath + "lanier_no_data.shp")

3. Start off by using the Rasterize operator to rasterize the vector dataset. Place this within
a variable called rasterizedVector.

rasterizedVector = m.Rasterize(vi)

4. Use a conditional statement to select only the pixels from lanier.img that fall

within rasterizedVector

selectPixelsWithin = m.Conditional(rasterizedVector,
ri)

5. Use the SetNoData operator to set the pixels to “0”.

 451

noDataRaster = m.SetToNoData(selectPixelsWithin, "0")

6. Create the raster output and execute.

ro = m.RasterOutput (noDataRaster, dataPath +
"lanier_region.img")

m.Execute()

7. Run the script and assess the result in ERDAS IMAGINE

452 Python Scripting with Spatial Modeler

 453

Task 7: Modifying a Spatial Model

A Model object loaded in Python can be modified; most commonly, to change parameters of
operators. The following example shows how to examine the contents of a model, add operators,
and read and modify values.

from imagine import modeler
from exampleshelper import dataPath, outputPath

Load a saved model
modelFile = outputPath + "sum-layers.gmdx"
m = modeler.Solution.Load(modelFile)

Display everything
print m
for op in m.GetOperators():
 print op
 for port in op.GetPorts():
 print port

Find a specific operator
rasterInput = next(op for op in m.GetOperators() \
 if op.name == u"RasterInput")

Change an input to that operator
rasterInput["Filename"] = dataPath + "/wasia1-
65535.img"

Add a new operator to the loaded model
stats = m.Statistics(rasterInput)

Add a TableSubset operator to the loaded model
tableSub = m.TableSubset(stats["Max"], "2:2")

Read an output value of the added operator,
implicitly causing it

to be executed.
band3Max = tableSub["TableOut"].data
print 'Maximum value of band 3 is: ' + str(band3Max)

454 Python Scripting with Spatial Modeler

Task 8: Viewing a Spatial Model in the Editor

The following kinds of objects can be exchanged between Python and Spatial Modeler:

• Text strings (including file and directory names)

• Integers and unsigned numbers

• Floating point numbers

• Boolean flags

• Number ranges (Spatial Modeler’s Range data type)

• Lists of ranges (Spatial Modeler’s RangeList data type)

Interaction with ERDAS IMAGINE

Spatial Models can be run from Python without opening an interactive window; however, if an
ERDAS IMAGINE workspace is running, a model can be viewed in the Spatial Modeler Editor or
previewed in the 2D View.

from imagine import modeler
from exampleshelper import dataPath, outputPath

Load a saved model
modelFile = outputPath + "sum-layers.gmdx"
m = modeler.Solution.Load(modelFile)

Display everything
print m
for op in m.GetOperators():
 print op
 for port in op.GetPorts():
 print port

Add a new operator to the loaded model
rasterInput = next(op for op in m.GetOperators() \
 if op.name == u"RasterInput")
stats = m.Statistics(rasterInput)

Open the modified model in the editor. Note that
changes made in the

editor are not reflected in "m".
ERDAS IMAGINE must be running!

 m.ShowInEditor()

 455

Class Notes

456 Python Scripting with Spatial Modeler

Class Notes

